

available at www.sciencedirect.com

EGFR gene copy number alteration is a better prognostic indicator than protein overexpression in oral tongue squamous cell carcinomas

Yoshimi Nakata ^a, Narikazu Uzawa ^{a,*}, Ken-Ichiro Takahashi ^a, Jun Sumino ^a, Chieko Michikawa ^a, Hiroaki Sato ^a, Itaru Sonoda ^a, Yoshio Ohyama ^a, Norihiko Okada ^b, Teruo Amagasa ^a

- ^a Maxillofacial Surgery, Maxillofacial Reconstruction and Function, Division of Maxillofacial and Neck Reconstruction, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
- ^b Diagnostic Oral Pathology, Oral Restitution, Division of Oral Health Science, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan

ARTICLE INFO

Article history: Available online 16 August 2011

Keywords:
Oral tongue
Squamous cell carcinoma
Fluorescence in situ hybridisation
(FISH)
Immunohistochemistry (IHC)
Epidermal growth factor receptor
(EGFR)

ABSTRACT

Although Epidermal growth factor receptor (EGFR) is particularly important in the pathogenesis of head and neck squamous cell carcinomas (HNSCCs), conflicting data have been reported on the correlation between EGFR copy number and survival and the association between EGFR copy number and protein expression. Anatomical site of the tumour in HNSCCs may likely contribute to the discordance of the above points as EGFR expression may differ between the sub-sites of HNSCCs. Thus, in this study, we focused on oral tongue squamous cell carcinomas (OTSCCs). To investigate the association between EGFR copy number alteration and overexpression and to determine which is the more reliable prognostic indicator, Fluorescence in situ hybridisation (FISH) and immunohistochemical staining (IHC) were performed at a single institution on samples from 89 patients with OTSCCs undergoing surgery as the primary treatment modality. Thirty-two (36%) of 89 cases demonstrated an EGFR copy number alteration. EGFR protein expression was found in all 89 cases, of which 82.0% showed overexpression. No significant correlation was found between gene copy number and protein overexpression. Gene copy number alteration was significantly associated with reduced disease-free survival (P = 0.048) and overall survival (P = 0.001). Multivariate Cox proportional hazards analysis demonstrated that EGFR copy number increase was significantly correlated with overall survival (P = 0.001). EGFR copy number status is a more reliable indicator than protein overexpression of the survival rate in OTSCCs. FISH analysis of the EGFR status is useful in predicting poor prognosis in OTSCCs.

© 2011 Elsevier Ltd. All rights reserved.

^{*} Corresponding author: Address: Maxillofacial Surgery, Maxillofacial Reconstruction and Function, Division of Maxillofacial and Neck Reconstruction, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan. Tel.: +81 3 5803 5499; fax: +81 3 5803 5500.

E-mail addresses: y-nakata.mfs@tmd.ac.jp (Y. Nakata), n-uzawa.mfs@tmd.ac.jp (N. Uzawa), ken514.mfs@tmd.ac.jp (K.-I. Takahashi), jun_sumino@ybb.ne.jp (J. Sumino), c-michikawa.mfs@tmd.ac.jp (C. Michikawa), h.sato.mfs@tmd.ac.jp (H. Sato), italu.mfs@tmd.ac.jp (I. Sonoda), yohyama1219@gmail.com (Y. Ohyama), nokd.opth@tmd.ac.jp (N. Okada), amagasa.mfs@tmd.ac.jp (T. Amagasa). 0959-8049/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.ejca.2011.07.006

1. Introduction

The epidermal growth factor receptor (EGFR) located at the region of p12 on chromosome 7 is a member of the ErbB family of tyrosine kinase receptors that regulates cell growth. Binding of its specific ligands, such as epidermal growth factor (EGF) and transforming growth factor- α (TGF- α), promotes homo- or hetero-dimerisation with other family members (ERBB2, ERBB3 and ERBB4) and subsequent autophosphorylation and initiates a number of signalling pathways. Upregulated EGFR signalling in tumours has been correlated with cell proliferation, invasion, angiogenesis, metastasis, migration and inhibition of apoptosis.1 EGFR is overexpressed in many epithelial malignancies, including approximately 80% of head and neck squamous cell carcinomas (HNSCCs),² and overexpression occurs early during the course of malignant development.3 Thus, EGFR is important in the pathogenesis of HNSCCs, and is an interesting target for therapy.

Recently, several clinical trials of EGFR inhibitors in HNSCC treatment have demonstrated a clear benefit of these drugs in a small subset of patients. Phase II studies of patients with recurrent or metastatic HNSCCs found encouraging clinical activity of several EGFR inhibitors.4,5 Moreover, a large randomised phase III trial showed that a combination of EGFR inhibitors and radiation therapy in locally advanced HNSCCs significantly prolongs overall survival.6 Therefore, subsets of HNSCCs appear to respond to EGFR inhibitors, and it is critical that we are able to select those patients who will best respond to such treatment. The identification of predictive markers for treatment response is also a task of high priority. In nonsmall cell lung cancer (NSCLC), increased EGFR copy number, as assessed by fluorescence in situ hybridisation (FISH), is significantly correlated with improved clinical outcome in EGFR inhibitor-treated patients, 7,8 suggesting that gene copy number may be a useful predictor. However, this association has not yet been clearly demonstrated for HNSCCs.

In addition, there have been several conflicting reports on the association between EGFR protein expression by immunohistochemistry (IHC) and survival in HNSCCs. Many studies have indicated that EGFR protein expression is significantly correlated with survival in several human malignancies, including NSCLC9 and HNSCC, 10,11 whilst others found no association between EGFR protein expression and HNSCC prognosis. 12,13 Furthermore, conflicting data have been reported on the correlation between EGFR copy number and HNSCC survival and the association between EGFR copy number and protein expression. 14-18 These discrepancies may result from differences in tumour site and histology, patient numbers, case heterogeneity and the methods used to assess copy number. In particular, variations in case heterogeneity and treatment strategies may contribute to conflicting evaluations of EGFR as a prognostic indictor for HNSCCs.

HNSCC is itself a heterogeneous disease, and there might be differences in signalling depending on the pathobiology of the tumour. EGFR expression may also differ between the site of HNSCC; for example, it was reported to be low in laryngeal tumours compared with those from the pharynx and oral cavity.¹⁹ Additionally, the presence of human papilloma virus (HPV), more common in the base of the tongue than in the oral cavity, is associated with favourable prognosis in oropharyngeal cancer.^{20–22} Therefore, to evaluate the prognostic significance of EGFR protein expression and copy number status, it is essential to evaluate at separate sub-sites.

Thus, in the present study, we focused on oral tongue SCCs (OTSCCs) in 89 patients with OTSCCs undergoing surgery as the primary treatment modality at a single institution. We examined the association between EGFR copy number alteration and protein expression to determine which is more reliable as a prognostic indicator in this malignancy. Using this approach, we could correctly determine prognostic significance of this gene alteration without affection of other factors such as site-specific factors and treatment modalities.

2. Materials and methods

2.1. Patients

Tissue samples were obtained from 89 patients with OTSCC who had undergone primary surgical excision with curative intent at the Department of Maxillofacial Surgery, Graduate School, Tokyo Medical and Dental University (Tokyo, Japan) between 1999 and 2009. None of these patients received preoperative treatment. All protocols of this study were reviewed and approved by the Research Ethics Committee of Tokyo Medical and Dental University. Informed consent was obtained from all patients in accordance with our Institutional guidelines. Clinical staging was defined according to the International Union against Cancer TNM classification system.²³ Tumours were classified histopathologically as well, moderately or poorly differentiated according to their cellular differentiation as defined by the World Health Organisation criteria.24 The mode of tumour invasion at the tumour-host borderline was classified according to the modified Jacobsson criteria.^{25,26} Disease-free survival (DFS) was calculated from the time of initial examination to the time of local, regional or distant recurrence of the disease or the time of last follow-up. Overall survival (OS) was calculated from the time of initial examination to the time of death or last follow-up.

2.2. FISH analysis

Samples were taken from 89 tumours by fine-needle aspiration (FNA) technique and FISH analysis were performed as described previously using the EGFR SpectrumOrange/CEP 7 SpectrumGreen probe (Vysus/Abbott Molecular, Des Plaines, IL). FEGFR FISH patterns were classified as follows: balanced disomy, chromosome/nucleus ratio (C/N) \leq 2.5; balanced trisomy, C/N 2.6–3.0; balanced polysomy, C/N >3.0 (where balanced patterns had an average ratio gene/chromosome copy number per nucleus (G/C) of 0.9–2.0); and amplification, G/C >2.0 and gene/nucleus ratio >3.0. $^{18,27-30}$ Tumours showing disomy were regarded as unchanged in gene number, with all other tumours being considered to have gene numerical alterations.

2.3. Immunohistochemistry (IHC)

IHC staining was performed using the streptavidin-biotin immunoperoxidase technique with a Histofine SAB-PO kit (Nichirei, Tokyo, Japan). Formalin-fixed paraffin-embedded tissue sections (4-µm) were stained with the mouse monoclonal EGFR antibody 31G7 (Invitrogen, Carlsbad, CA) at a 1:50 dilution according to the manufacturer's instructions. Staining with PBS buffer instead of EGFR antibody solution was carried out as a negative control. Positive staining was defined as membranous staining above background level but staining intensity was not assessed. For each tissue section, squamous cell carcinoma cells were counted in three different regions at the deepest level of the invasion site. The number of EGFR-positive squamous tumour cells was also counted and the average positive rate for three different regions was calculated. Expression was scored as grade I (<50% tumour cells stained), grade II (50-90%) and grade III (>90%). Grade II and III was defined as protein overexpression. Grades were assigned by an oral pathologist and two oral surgeons blinded to the clinical parameters.

2.4. Statistical analysis

FISH and IHC results were compared with the clinicopathologic information using the two-tailed Fisher's exact test. The clinicopathologic information included patient age, gender, smoking habit, alcohol consumption, disease stage, histopathological grading, mode of invasion, nodal status, disease recurrence, and survival. DFS and OS were calculated

by the Kaplan–Meier method and statistical significance was determined by the log-rank test. Multivariate survival analysis was performed using Cox's proportional hazard model. The level of significance was set at P < 0.05. All statistical analyses were performed using SPSS 15.0 J software (SPSS Inc., Chicago, IL).

3. Results

3.1. FISH

Thirty-two (36.0%) of the 89 cases exhibited EGFR numerical alteration: 16 with trisomy (18.1%), 14 with polysomy (15.7%) and two with amplification (2.2%). Fifty-seven cases showed disomy (64.0%) and none showed gene deletion (Fig. 1).

3.2. IHC

EGFR protein expression was observed in all samples including normal epithelium and tumour tissue. Amongst the 89 OTSCC cases analysed, EGFR protein overexpression was found in 73 cases (82.0%), of which 31 (34.8%) scored grade III, 42 (47.2%) scored grade II, and 16 scored grade I (18.0%) (Fig. 2).

3.3. Statistical analysis

The two-tailed Fisher's exact test found no correlation between EGFR copy number status and protein expression (P = 0.778) (Table 1). The correlation between EGFR numerical

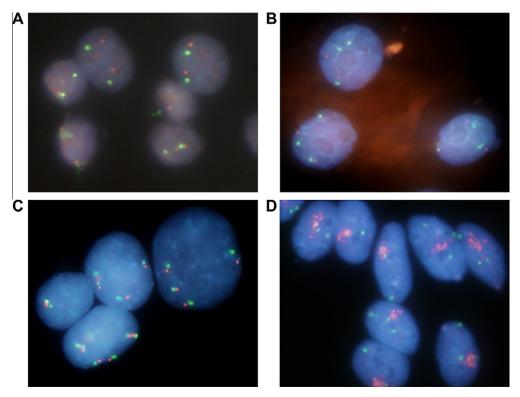


Fig. 1 – Evaluation of gene copy number by fluorescence in situ hybridisation (FISH). Cells were hybridised with probes for the chromosome 7 (green) and EGFR (orange). (A) Balanced disomy, (B) balanced trisomy, (C) balanced polysomy, (D) gene amplification.

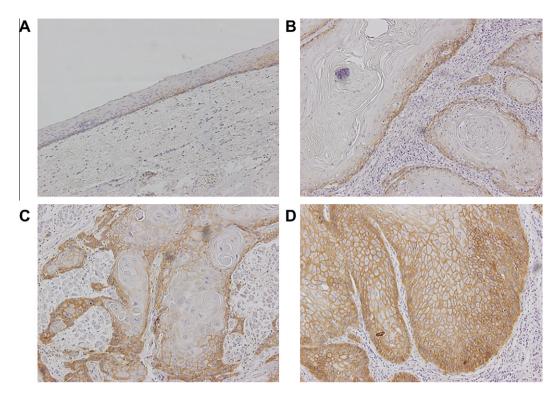


Fig. 2 – Immunohistochemical staining of EGFR protein expression. (A) Normal epithelium, (B) grade I, (C) grade II, (D) grade III.

Table 1 – Relation between EGFR FISH and IHC status.						
	FISH status					
	Negative	Positive	Total			
IHC status						
Overexpression (–)	11	5	16			
Overexpression (+)	46	27	73			
Total	57	32	89			
FISH: fluorescence in situ hybridisation						
IHC: immunohistochemical staining.						
Negative: disomy.						
Positive: trisomy, polysomy and amplifi	cation.					

alteration/protein overexpression and clinicopathological features of the 89 primary OTSCCs are summarised in Table 2. EGFR copy number increase was significantly correlated with a more diffuse tumour invasion pattern (P = 0.006) and survival (P = 0.002). By contrast, there was no correlation between EGFR overexpression and clinicopathological features.

Sixteen of 32 patients (50.0%) with tumours that had EGFR numerical alteration and 39 of 57 patients (68.4%) with tumours that lacked such a genetic abnormality had no disease recurrence. Twenty of 32 patients (62.5%) with EGFR numerical alteration and 52 of 57 patients (91.2%) without such alterations remained alive. Kaplan–Meier survival curves clearly demonstrated the adverse impact of EGFR copy number alteration on both disease recurrence (P = 0.048) and OS (P = 0.001) (Fig. 3A, B).

Conversely, 44 of 73 patients (60.3%) whose tumours overexpressed EGFR and 11 of 16 patients (68.8%) without overexpression did not have recurrence. Forty-seven of 73 patients (78.1%) with EGFR overexpression and 15 of 16 patients (93.8%) without overexpression survived. The DFS and OS curves of the patients with EGFR overexpression were lower than that of patients without overexpression, although this just failed to reach statistical significance (P = 0.506, P = 0.181) (Fig. 3C, D).

Multivariate analysis showed that diffuse invasion pattern (RR = 2.117, 95% CI = 1.077–4.162, P = 0.030) was retained as an independent prognostic indicator for DFS. Clinical stage III/IV (RR = 3.266, 95% CI = 1.239–8.607, P = 0.017) and EGFR copy number increase (RR = 5.557, 95% CI = 1.933–15.975, P = 0.001) were independent prognostic factors of poor OS. However, EGFR overexpression was not an independent prognostic indicator in these models (Table 3).

To confirm that EGFR copy number status is a more reliable indicator than protein overexpression in OTSCCs, patients with tumours demonstrating EGFR protein overexpression were divided into two groups based on their EGFR FISH status and assigned Kaplan–Meier survival curves. Twenty-seven patients whose tumours exhibited a simultaneous EGFR copy

	Total No. of patients	EGFR FISH-positive	P^a	EGFR overexpression	P
Age (yrs)					
<60	45	16		38	
≽ 60	44	16	NS	35	NS
Gender					
Male	62	26		51	
Female	27	6	NS	22	NS
Smoking					
Yes	40	18		32	
No	49	14	NS	41	NS
Al11					
Alcohol consumption Yes	29	10		25	
No	60	22	NS	48	NS
	80	22	113	40	149
Disease stage					
I, II	61	22		50	
III, IV	28	10	NS	23	NS
Cellular differentiation					
Well to moderate	74	27		60	
Poor	12	4	NS	10	NS
Mode of invasion					
1 to 3	54	14		45	
4C to 4D	32	18	0.006	25	NS
Nodal status ^b					
No metastasis	66	24		53	
Metastasis	23	8	NS	20	NS
Recurrence					
Negative	55	16		44	
Positive	34	16	NS	29	NS
Survival Alive	72	20		57	
Dead	72 17	12	0.002	16	NS

NS: not significant.

number increase and protein overexpression (Group +/+) had significantly worse survival curves than 46 patients with tumours negative for FISH status and positive for protein overexpression (Group -/+) in both DFS (P = 0.033) and OS (P = 0.002) curves (Fig. 4).

4. Discussion

EGFR is particularly important in the pathogenesis of HNSCC, and is a promising biomarker candidate for this malignancy. In addition, it is anticipated to be a good drug target for HNSCC treatment as it is overexpressed in most cases of this cancer. However, there are three unsolved issues: (1) the association between protein expression and prognosis, (2) the correlation between gene copy number status and prognosis, and (3) the relationship between protein expression level and gene copy number. Despite of several studies in these areas, the data are conflicting and the issues remain controversial. These discrepancies may result from differences in methodologies used to assess EGFR and also from case heterogeneity in HNSCCs.¹⁹

In particular, anatomical site of the tumour in HNSCCs may likely contribute to the discordance of the above points as EGFR expression may differ between the sub-sites of HNSCCs. Thus, in this study, we focused on OTSCCs, which were treated with surgery as the primary treatment modality, and tried to examine the above unsolved issue using FISH and IHC. Kaplan-Meier analysis showed that the OS period in patients whose tumours exhibited an EGFR copy number increase was significantly shorter than in patients without such genetic abnormalities. Although EGFR overexpression occurred more frequently in patients with an unfavorable outcome, these differences failed to reach statistical significance. Furthermore, multivariate analysis using the Cox proportional hazard model revealed that EGFR copy number alteration, but not EGFR protein overexpression, was an independent prognostic indicator for OS. These results suggest that EGFR copy number status is a more reliable prognostic indicator than EGFR overexpression in OTSCCs.

Of particular interest was the finding that the DFS and OS rates for Group +/+ patients (FISH-positive and protein overexpression-positive) were significantly lower than those of Group -/+ patients (FISH-negative and protein

^a By two-tailed Fisher exact test.

b Histopathlogic diagnosis.

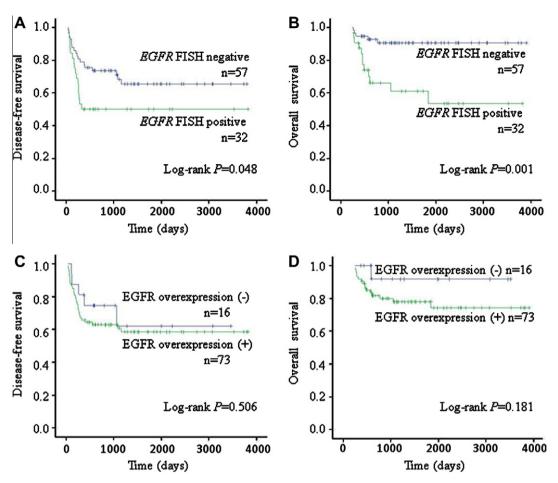


Fig. 3 – Kaplan-Meier plots for (A) disease-free survival according to EGFR gene status, (B) overall survival according to EGFR gene status, (C) disease-free survival according to EGFR protein status, and (D) overall survival according to EGFR protein status.

Gender NS - - NS - - Smoking NS - - NS - - Alcohol consumption NS - - NS - - Disease stage NS - - 0.017 3.266 1.239-8.607 Cellular differentiation NS - - NS - - Mode of invasion 0.030 2.117 1.077-4.162 NS - - EGFR overexpression NS - - - - -	Clinicopathological parameters	Disease-free survival			Overall survival		
Gender NS - - NS - - Smoking NS - - NS - - Alcohol consumption NS - - NS - - Disease stage NS - - 0.017 3.266 1.239-8.607 Cellular differentiation NS - - NS - - Mode of invasion 0.030 2.117 1.077-4.162 NS - - EGFR overexpression NS - - NS - -		p Value	Risk ratio	95%CI	p Value	Risk ratio	95%CI
Smoking NS - - NS - - Alcohol consumption NS - - NS - - Disease stage NS - - 0.017 3.266 1.239–8.607 Cellular differentiation NS - - NS - - Mode of invasion 0.030 2.117 1.077–4.162 NS - - EGFR overexpression NS - - NS - -	Age	NS	-	_	NS	_	_
Alcohol consumption NS - - NS -	Gender	NS	_	-	NS	-	-
Disease stage NS - - 0.017 3.266 1.239–8.607 Cellular differentiation NS - - NS - - Mode of invasion 0.030 2.117 1.077–4.162 NS - - EGFR overexpression NS - - NS - -	Smoking	NS	-	-	NS	-	-
Cellular differentiation NS - <td>Alcohol consumption</td> <td>NS</td> <td>-</td> <td>-</td> <td>NS</td> <td>-</td> <td>-</td>	Alcohol consumption	NS	-	-	NS	-	-
Mode of invasion 0.030 2.117 1.077–4.162 NS - - EGFR overexpression NS - - NS - -	Disease stage	NS	-	-	0.017	3.266	1.239-8.607
EGFR overexpression NS – – NS – –	Cellular differentiation	NS	-	_	NS	_	-
	Mode of invasion	0.030	2.117	1.077-4.162	NS	-	-
	EGFR overexpression	NS	-	-	NS	-	-
		NS	-	_	0.001	5.557	1.933–15.975
	NS: not significant.						

overexpression-positive). These observations indicate that EGFR copy number alteration may not be related to EGFR protein expression alone. To determine why gene copy number increases rather than protein overexpression should be the strongest prognostic indicator in OTSCCs, we examined the correlation between copy number and centromere of chromosome 7, and found a significant positive correlation between the two genetic factors. This finding indicates that EGFR copy number changes occur frequently in association with chro-

mosome 7 aneusomy. And we demonstrated that OTSCCs with chromosome 7 aneusomy had worse survival curves than those without (data not shown). Therefore, one possibility is that additional genes on chromosome 7 that are coamplified with EGFR are involved in mediating these aggressive behaviours. In support of this theory, Gebhart et al. examined 35 OSCCs by comparative genomic hybridisation, and found that patients whose tumours exhibited a gain of short arm on chromosome 7 had higher rates of relapse and worse

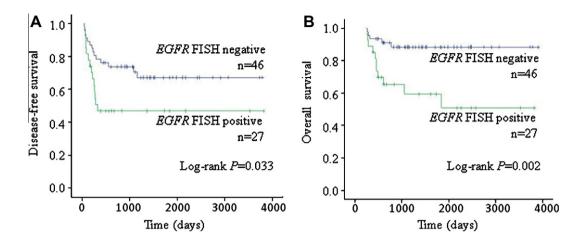


Fig. 4 – Kaplan–Meier plots of 73 patients with tumours that exhibited EGFR protein overexpression according to EGFR gene status. (A) disease-free survival, (B) overall survival.

survival.³¹ Alternatively, EGFR copy number alteration may be a surrogate marker of chromosomal instability, which confers an adverse prognosis in many tumours. Recently, we examined the chromosomal instability of OSCCs using FISH with chromosome 7, 9 and, 11 centromere probes and clearly demonstrated that high-grade chromosomal instability was associated with reduced DFS and OS.³² However, the detailed mechanism by which EGFR FISH status contributes to the oncogenic effect in cells with EGFR protein overexpression remains unclear.

To our knowledge, ours is only the second study to exclusively investigate EGFR gene copy status and protein expression levels in OTSCCs. The first was reported by Ryott et al. in 2009, and examined EGFR gene copy number and protein expression in 78 pretreatment OTSCC paraffin samples. They demonstrated a significant correlation between copy number and protein expression, but not between EGFR FISH and IHC status and survival. 17 Although their analytic methods (FISH and IHC) and the anatomical site (OTSCCs) were similar to ours, their findings conflict with ours. These discrepancies could be a result of the evaluation method used to assess EGFR FISH status. In the present study, we performed dualcolour FISH using EGFR- and centromere-specific chromosome 7 probes, a procedure typically used in many previous studies and evaluated copy number status of both the EGFR gene and chromosome 7 centromere. On the other hand, Ryott et al. used a centromere-specific chromosome 4 probe as a control for sectioning artifacts, but this was not used to interpret the EGFR FISH status. There were additional differences in sampling methods used (FNA biopsy from fresh tumours versus paraffin-embedded tissue) and in the primary treatment modality (surgery versus preoperative radiotherapy followed by surgery). Moreover, with regard to the association between EGFR FISH and protein status, no positive association has been consistently observed in NSCLC333 and colon cancer.34 Discrepancies may also result from differences in the site and histology of the tumour, patient number, case heterogeneity and the methods used to assess EGFR. However, most importantly, EGFR copy status, but not protein expression level, is associated with the response to EGFR-targeted

therapies in NSCLC³⁵ and colorectal cancers,^{36–38} indicating that gene copy number status may be a predictive marker for the response to EGFR-targeted therapies in HNSCCs. Thus, when further investigating EGFR copy number status, especially for correlation with response to EGFR-targeted agents, it will be necessary to investigate HNSCC sub-sites and to develop a consensus evaluation of EGFR copy number status.

In conclusion, we clearly demonstrate that EGFR copy number status is a more reliable indicator than EGFR protein overexpression in OTSCCs and that the copy number increase is not correlated with EGFR protein levels alone. Although copy number changes of this gene may indicate the existence of additional genes that are coamplified with EGFR, or chromosomal instability in the tumour, the mechanism by which the FISH-positive status contributes to the malignant phenotype of this cancer is not clear. Thus, further studies are required to clarify this point. It will be of interest to determine whether EGFR FISH status will prove useful in selecting patients who would benefit from EGFR inhibitor therapy for OTSCCs.

Conflict of interest statement

None declared.

Acknowledgements

This study was supported by Scientific Research from the Ministry of Education, Science, Sport and Culture, Japan (No. 21592551).

REFERENCES

 Ciardiello F, Tortora G. Epidermal growth factor receptor (EGFR) as a target in cancer therapy: understanding the role of receptor expression and other molecular determinants that could influence the response to anti-EGFR drugs. Eur J Cancer 2003;39:1348–54.

- Grandis JR, Tweardy DJ. Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res 2003;53:3579–84.
- 3. Ang KK, Berkey BA, Tu X, et al. Impact of epidermal growth factor receptor expression in survival and pattern of relapse in patients with advanced head and neck carcinoma. *Cancer Res* 2002;**62**:7350–6.
- Cohen EE, Rosen F, Stadler WM, et al. Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 2003;21:1980–7.
- Baselga J, Trigo JM, Bourhis J, et al. Phase II multicenter study
 of the antiepidermal growth factor receptor monoclonal
 antibody cetuximab in combination with platinum-based
 chemotherapy in patients with platinum-refractory
 metastatic and/or recurrent squamous cell carcinoma of the
 head and neck. J Clin Oncol 2005;23:5568–77.
- Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006;354:567–78.
- Hirsch FR, Varella-Garcia M, McCoy J, et al. Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: A southwest Oncology Group study. J Clin Oncol 2005;23:6838–45.
- Cappuzzo F, Hirsch FR, Rossi E, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst 2005;97:643–55.
- Selvaggi G, Novello S, Torri V, et al. Epidermal growth factor receptor overexpression correlates with a poor prognosis in completely resected non-small-cell lung cancer. Ann Oncol 2004:15:28–32.
- 10. Grandis JR, Melhem MF, Gooding WE, et al. Levels of TGF- α and EGFR protein in head and neck squamous cell carcinoma and patient survival. *J Natl Cancer Inst* 1998;**90**:824–32.
- Sheu JJ, Hua CH, Wan L, et al. Functional genomic analysis identified epidermal growth factor receptor activation as the most common genetic event in oral squamous cell carcinoma. Cancer Res 2009;69:2568–76.
- Sheikh Ali MA, Gunduz M, Nagatsuka H, et al. Expression and mutation analysis of epidermal growth factor receptor in head and neck squamous cell carcinoma. Cancer Sci 2008;99:1589–94.
- 13. Seethala RR, Gooding WE, Handler PN, et al. Immunohistochemical analysis of phosphotyrosine signal transducer and activator of transcription 3 and epidermal growth factor receptor autocrine signaling pathways in head and neck cancers and metastatic lymph nodes. Clin Cancer Res 2008;14:1303–9.
- Morrison LE, Jacobson KK, Friedman M, et al. Aberrant EGFR and chromosome 7 associated with outcome in laryngeal cancer. Laryngoscope 2005;115:1212–8.
- Chung CH, Ely K, McGavran L, et al. Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas. J Clin Oncol 2006;24:4170–6.
- Temam S, Kawaguchi H, El-Nagger AK, et al. Epidermal growth factor receptor copy number alterations correlated with poor clinical outcome in patients with head and neck squamous cancer. J Clin Oncol 2007;25:2164–70.
- Ryott M, Wangsa D, Heselmeyer-Haddad K, et al. EGFR protein overexpression and gene copy number increases in oral tongue squamous cell carcinoma. Eur J Cancer 2009;45:1700–8.

- 18. Takahashi K, Uzawa N, Myo K, et al. Simultaneous assessment of cyclin D1 and epidermal growth factor receptor gene copy number for prognostic factor in oral squamous cell carcinomas. Oral Sci Int 2009;6:8–20.
- Takes RP, Baatenburg de Jong RJ, Schuuring E, et al. Differences in expression of oncogenes and tumor suppressor genes in different sites of head and neck squamous cell. Anticancer Res 1998;18:4793–800.
- 20. Fakhry C, Westra WH, Li S, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. *J Natl Cancer Inst* 2008;**100**:261–9.
- Reimers N, Kasper HU, Weissenborn SJ, et al. Combined analysis of HPV-DNA, p16 and EGFR expression to predict prognosis in oropharyngeal cancer. Int J Cancer 2007:120:1731–8.
- 22. Weinberger PM, Yu Z, Haffty BG, et al. Prognostic significance of p16 protein levels in oropharyngeal squamous cell cancer. Clin Cancer Res 2004;10:5684–91.
- 23. Sobin LH, Wittekind C, editors. TNM classification of malignant tumors. 5th Edn. New York, NY: John Wiley & Sons; 1997.
- World Health Organization. International histological classification of tumors. 2nd ed. Berlin, Germany: Springer-Verlag; 1998.
- Jacobsson PA, Eneroth GM, Killander D, Moeberger G, Martenssen B. A histological classification and grading of malignancy in carcinoma of larynx. Acta Radiol 1973;12:1–18.
- Yamamoto E, Kohama G, Sunakawa H, Iwai M, Hiratsuka H. Mode of invasion, bleomycin sensitivity, and clinical course in squamous cell carcinoma of the oral cavity. Cancer 1983;51:2175–80.
- 27. Miyamoto R, Uzawa N, Nagaoka S, et al. Potential marker of oral squamous cell carcinoma aggressiveness detected by fluorescence in situ hybridization in fine-needle aspiration biopsies. *Cancer* 2000;95:2152–9.
- Myo K, Uzawa N, Miyamoto R, et al. Cyclin D1 gene numerical aberration is a predictive marker for occult cervical lymph node metastasis in TNM stage I and II squamous cell carcinoma of the oral cavity. Cancer 2005;104:2709–16.
- Sunpaweravong P, Sunpaweravong S, Puttawibul P, et al. Epidermal growth factor receptor and cyclin D1 are independently amplified and overexpressed in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol 2005;131:111-9.
- Uzawa N, Sonoda I, Myo K, et al. Fluorescence in situ hybridization for detecting genomic alterations of cyclin D1 and p16 in oral squamous cell carcinomas. Cancer 2007;110:2230–9.
- 31. Gobhart E, Ries J, Wiltfang J, Liehr T, Efferth T. Genomic gain of the epidermal growth factor receptor harboring band 7p12 is part of a complex pattern of genomic imbalances in oral squamous cell carcinomas. Arch Med Res 2004;35:385–94.
- Sato H, Uzawa N, Takahashi K, et al. Prognostic utility of chromosomal instability detected by fluorescence in situ hybridization in fine-needle aspirates from oral squamous cell carcinomas. BMC Cancer 2010;10:182.
- Dacic S, Flanagan M, Cieply K, et al. Significance of EGFR protein expression and gene amplification in non-small cell lung carcinoma. Am J Clin Pathol 2006;125:860–5.
- 34. Ooi A, Takehana T, Li X, et al. Protein overexpression and gene amplification of HER-2 and EGFR in colorectal cancers: an immunohistochemical and fluorescent in situ hybridization study. Mod Pathol 2004;17:895–904.

- 35. Hirsch FR, Herbst RS, Olsen C, et al. Increased EGFR gene copy number detected by fluorescent in situ hybridization predicts outcome in non-small-cell lung cancer patients treated with cetuximab and chemotherapy. *J Clin Oncol* 2008;26:3351–7.
- Moroni M, Veronese S, Benvenuti S, et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol 2005;6:279–86.
- 37. Cappuzzo F, Finocchiaro G, Rossi E, et al. EGFR FISH assay predicts for response to cetuximab in chemotherapy refractory colorectal cancer patients. *Ann Oncol* 2008;19:717–23.
- 38. Sartore-Bianchi A, Moroni M, Veronese S, et al. Epidermal growth factor receptor gene copy number and clinical outcome of metastatic colorectal cancer treated with panitumumab. *J Clin Oncol* 2007;25:3238–45.